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Abstract: Model Predictive Control is a powerful control approach suitable for industrial applications 
due to its simplicity and flexibility. The aim of the paper is to introduce principal points for on-line tuning 
and automatic set-up of predictive control parameters. A proposed way of the tuning arises from the fact 
that in all control tasks, there is a certain degree of uncertainty with respect to the controlled system 
including its neighborhood. The strategy takes advantage of an analogy of the discrete Predictive Control 
and Linear Quadratic Control (LQ Control) connected with the probability calculus. The parameter tuning 
is demonstrated on multidimensional robotic system. 

 

1. INTRODUCTION 

In common practice, the majority of the controllers generates 
control actions with fixed parameter scaling, independent 
of controlled system character, considering only differences 
between system outputs and their reference, required signals. 
It is sufficient in almost cases, where controlled systems 
are linear or slightly non-linear in their behavior and they 
have single or several few pairs of inputs and outputs. 

If the controlled systems have a considerable internal 
relations or a different number of their inputs and outputs, 
then, in such cases, it is necessary to involve this knowledge 
in used controller. This is feasible in model-based controllers. 
Especially suitable strategies for these cases are multistep 
strategies based on Linear Quadratic Control (LQ Control) 
and Model Predictive Control (Ordys et al., 1993). These 
strategies work well having correct physical or on-line iden-
tified model. The problem arises if this fact is not respected 
and control algorithm does not take into account the changes 
in the system response. 

Usually, from mathematical point of view, the model-based 
predictive algorithms are able to manage response changes 
by resetting (tuning) their parameters in each optimization. 
However, it is not usual due to a number of parameters 
(elements of parameters) and unknown systematic procedure 
of their tuning. This paper deals with one possible way of on-
line parameter tuning of Predictive Control if the system mo-
del is temporary imperfect or the measurement of system 
outputs is suddenly disturbed by rapid increase of noise. 

Model Predictive Control is a powerful control approach 
suitable for industrial applications for its simplicity and fle-
xibility (Rossiter, 2003). The aim of this paper is to introduce 
principal points for on-line tuning and automatic set-up 
of Model Predictive Control. The proposed tuning strategy 
arises from the fact that in all control tasks, there is a certain 
degree of uncertainty with respect to the system to be con-
trolled and its neighborhood (Wittenmark, 1995). 

The strategy takes advantage of an analogy of the discrete 
Predictive Control and LQ Control connected with the proba-
bility calculus (Kárný, 1996). The tuning strategy will be de-
monstrated on multidimensional robotic system representing 
a system with internal nonlinear relations of parameters, sta-
tes, inputs and outputs.  

2. MODEL-BASED APPROACH TO CONTROL 

Model-based approach to control represents a specific way, 
which consists in design (preliminary) steps and main real-
control steps. The steps can be outlined as follows. 

2.1 Design steps of model-based control 

– Data pre-processing: input and output signal specification, 
   removing outliers and possible signal scaling;   
– Prior information specification: definition of supposed 
   model order and model parameters of controlled system, 
   possibly mathematical-physical analysis;  
– Model initialization: model structure or order estimation, 
   inclusion of prior information in that model structure;  
– Estimation/Calculation of model parameters;  
– User ideal specification: pre-processing of user require-
   ments and their transformation into suitable (unified) form 
   for control computation;  
– Control design: set of controller parameters, initialization. 

2.2 Main real-control steps 

– Model innovation: on-line model parameter innovation/iden- 
   tification or recalculation of state dependent parameters;  
– Control computation: adjustment of controller parameters, 
   computation of control actions relative to the system outputs 
   and their reference, and realization of computed actions. 

Sequence of outlined steps and their procedures correspond 
to the character of given control process and selected control 
strategy. This paper is focused on control design and control 
computation steps in view of the controller parameter tuning. 
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3. MODEL PREDICTIVE CONTROL 

Predictive Control is based on a minimization of a quadratic 
criterion (1), in which the future system outputs are substitu-
ted by their predictions (2) expressed by means of the system 
model (3) (Rossiter, 2003; Ordys et al. 1993): 
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where ŷ , w  and u  are vectors of predictions (future predic-
ted system outputs), references and control actions (system 
inputs) for a given prediction horizon :N   
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and matrices yQ  and uQ  are weighting control parameters: 
output and input penalizations; E is an operator of mean. 
The predictions Nkk ++ yy ˆ,,ˆ 1 L  in appropriate time instants 
of the prediction horizon can be expressed recurrently by (2) 
using the following model function in general form: 
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The function f (uk, xk) can represent either input-output model 
(e.g. autoregressive model) or state-space model. In the for-
mer case, kx  denotes the vector of delayed system inputs 
and outputs, the number of which corresponds to the system 
order, and in the latter case, kx  means usual state vector 
of the state-space model. 

The minimization of the criterion (1) can be provided in one 
shot as a least squares problem solution of algebraic system 
of equations (Golub et al., 1989): 
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For further explanation, let us consider the notation defined 
in the equations above. The following subsections outline 
common features of Predictive Control and LQ Control 
including its probabilistic interpretation. The interpretation 
will be use for on-line parameter tuning. 

3.1 Analogy of Predictive Control and LQ Control 

LQ Control, as well as Predictive Control, is a multistep 
control strategy. Its basis is a quadratic criterion usually 
expressed as follows 
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The minimization is not provided in one-shot as in predictive 
control design, but it is performed by recursive dynamic 
programming procedure as follows (Bobál et al., 2005) 
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In it, the terms NiS ik ,,2,1,0 L=+  represent running losses 
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being gradually accumulated in the cost value J  of the qua-
dratic criterion (1). 

If the minimization procedure starts every time with zero 
initial running loss, i.e. 00 =+NkS , evaluation of obtained 
control law of LQ control leads to identical values of control 
actions as in case of Predictive Control. 

In the both forms of the criterion i.e. (1) and (5), there operate 
parameters yQ  and uQ . As mentioned, they balance various 
control aims assigned by user, determine the quality of con-
trol process and character of controller response. Thus more 
precisely, penalization matrix yQ  serves weighting of diffe-
rences among expected system outputs and user set points. 
The higher values of yQ  push the controller to generate 
control actions, usually energy-demanding, for more precise 
meeting the user references (leading to higher precision) 
and vice versa. On the other hand, penalization matrix uQ  
weighs quantity, range or distribution of input energy. 
The lower values lead to higher, more independent control 
actions against the higher values of uQ , which lead to zero 
control. The both penalizations are mutually related. 

The elements of the penalizations are usually specifically 
selected and being constant for whole run of control process; 
predominantly only elements on diagonals are non-trivial 
non-zero values. It is sufficient for large number of cases 
with stationary properties and stable surrounding conditions. 
However, even in these cases, the parameters need to be ini-
tially set and during control process tuned so that the control 
actions correspond to topical system state. The following 
subsection explains possible physical meaning of the control 
parameters by which the automatic set-up and on-line tuning 
may be realized. It arises from the probability calculus. 

3.2 Probabilistic interpretation of control parameters 

To select the values of control parameters more properly, 
differently from their trial selection, it is useful to investigate 
their fundament. In (Kárný, 1996; Belda 2009), probabilistic 
approach to LQ Control design is shown. Using mentioned 
approach, the physical fundament or meaning of the para-
meters can be formulated and used for on-line tuning 
even for set-up. The approach is based on Kullback-Leibler 
divergence (KL-divergence) 
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where 
Nf  and 

N
If  are joint probability density functions 

(pdfs) operating on their domains and the horizon N . 
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Let succeeding system state 1+kx  is assumed that it follows 
from a previous system state kx  and system input ku  only, 
then pdfs 

Nf  and 
N

I f  are considered to be defined for values 
and their parameters within the horizon N : 

)()|(),|(

),,,,(

1
1111

11

k

Nk

kj
jjjjj

kkNkNkNkN

fufuf

ff

xxxx

xuxux

⎭
⎬
⎫

⎩
⎨
⎧

=

≡

∏
+

+=
−−−−

−+−++ L

 (8) 

)()|(),|(

),,,,(

1
1111

11

k

Nk

kj
jj

I
jjj

I

kkNkNkNk
I

N
I

fufuf

ff

xxxx

xuxux

⎭
⎬
⎫

⎩
⎨
⎧

=

≡

∏
+

+=
−−−−

−+−++ L

 (9) 

By minimization of KL-divergence, as it is indicated in (10), 

Nk
kjjj

N
I

N
Nk

kjjj
O

f
fff

+
+=−−

+
+=−− ∈

111

111

})|({
)||(minarg})|({

xu
xu D  (10) 

optimal pdf )|( kk
Of xu  is obtained. It describes probabilistic 

distribution of required control actions ku . Let the controlled 
system has normally distributed character ),( yy CµN : 
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where 
yµ  are expected values 

1ˆ += kyµy
; yC  is a covariance 

matrix; in a similar way for pdf ),( yy Cµ IIN : 
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yµI  is a vector of references 
1+= k

I wµy
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uµI  is a vector of control references usually }{ 1 0uµu ∨= −k
I . 

Then, the optimal pdf  )|( kk
O f xu  leads to the following form 

(Kárný, 1996; Belda, 2009): 
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Obtained control law, which is involved in the exponent 
of the optimal pdf )|( kk

O f xu , is identical to the control law 
of LQ control (Bobál et al., 2005); i.e. in general: 

probabilistic approach:  ),,,(
11 wxCCu yu kk

O f
−−−=  (15) 

LQ control:                    ),,,( wxQQu yu kk
O f−=  (16) 

According to this indicated correspondence, it is possible 
to interpret physical meaning of the control parameters, 
penalizations as an inversion of covariance matrices (disper-
sion for single input single output systems): 

11, −− ∝∝ yyuu CQCQ  (17) 

4. REALIZATION OF ON-LINE TUNING 

As mentioned, the penalizations yQ  and uQ  balance individual 
terms in the criterion (1), thereby determine partly the quality 
of the control process and partly the character of controller 
response. In the previous section was shown, that their inver-
sions closely relate to the dispersions or covariance matrices. 
They are usually selected from an experience or by an experi-
mental tuning. However, considering the relation to the qua-
lity of the model, the selection is possible to be done more 
straightforwardly and to be provided on-line during control 
process. 

4.1 Approximation of covariance matrices 

The covariance matrix yC , in the fact its inversion, repre-
sents matrix of precisions of the system model. It includes 
cross relations among individual output signals. The matrix is 
proportional to output penalization yQ  as indicated in (17). 

Let us return to the model function of controlled system (3). 
It represents only ideal deterministic relations of the system 
given by mathematical substance. However, the real systems 
contain number of stochastic components, which are usually 
involved into one noise term ye  as follows 

yexuy += −− ),( 11 kkk f  (18) 

The term ye  represents a stochastic uncertainty, which is not 
modeled. However, it can be used in transferred interpre-
tation for a quality evaluation of the model, i.e. 

kkkkkk f yy µyxuye −=−= −− ),( 11  (19) 

where kkk E yyµ y ˆ}{ ==  represents deterministic relation, 
in stochastic point of view, expected values of the system 
outputs. Using this term, other descriptive statistics (e.g. error 

yye y ˆ−= , dispersion }){( 2
yyE µ−  or covariance matrix 

})(){( TE yyy µyµyC −−=  can be evaluated in the relation 
to precision or precision matrices (Bernardo et al., 2000). 

The matrix uC  may have similar interpretation. Nevertheless, 
for proper interpretation, note that in the ideal case, it, being 
diagonal, determines required (expected) square standard 
deviations of individual inputs (control actions) or in real 
case, the covariance matrix is confronted with additional 
measurement of really realized control actions, if possible. 

This proposed idea is suitable for systems, where the system 
model together with the noise can change substantially. 
Possibly, due to additional interferences, these changes may 
occur randomly during the control. Inadequate choice of in-
put and output penalizations can cause serious problems. 

Unexpected system noise increase may force the controller 
to generate inputs that are suddenly out of any reasonable 
physical range of the controlled system or at least represent 
unreal magnitude change. It may cause serious device 
failures, e.g. system actuators (servo motors etc.) might not 
be able to achieve designed control interventions or may be 
damaged. 
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In such cases, where the model quality is low, it is usually 
acceptable to decrease control quality in order to achieve 
at least some reasonable values. The reduction of the control 
quality, i.e. the smaller reflection of difference between real 
measured output and its appropriate set point (reference), 
may be achieved just by adequate immediate on-line retuning 
of the penalizations. 

The actual tuning can be realized by on-line evaluation 
of the model quality (19), on the basis of which output 
penalization yQ  is changed using proportional relation 
to the output covariance matrix yC  or practically to its esti-
mate 
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which is calculated from current outputs iy . The effect is that 
during periods of increased output noise, output set point is 
set to be less strict. It causes the output to be tracked less 
closely. It allows the input to stay in its reasonable ranges. 

4.2 Filtration of approximation 

Topical values of output covariance matrix can change very 
quickly. It can cause big changes of yQ . In order to avoid 

this variability, )(ˆ iyC  should be filtrated. As a suitable filter, 
exponential forgetting is proved as follows 
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where λ  is a forgetting factor, which influences decrease 
speed of individual weight contributions to )(ˆ iyC ; ϕ  is 
a proportional coefficient shifting the values to values 
in no tuned mode in usual system behavior. Furthermore, ϕ  
unifies the ratio of both penalization matrices. In order to find 
a reasonable value for the parameter λ , the suitable number 
of time instants l  has to be defined in the correspondence 
to the character of control process. 

The contribution of )(ˆ iyC  to )(
~

iyC  drops to the given level 
during these l  time instants. The usual choice is to select 
the number of instants (denoted by 2/1l ) that cause dropping 
the contribution of )(ˆ iyC  to one half of its original. It implies 
that 2/1l  satisfies 
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 (23) 

So called ‘half-time’ 2/1l  is user friendly way for selection 
of the factor λ , because it can easily imagined what is 
the time needed for a contribution of )(ˆ iyC  to drop to one half. 

As indicated at description of proportional coefficient ϕ ,  
the control parameters are mutually related. For their selec-
tion, their ratios are important and significant in spite of uti-
lization of base units SI in the criterion. 

5. SIMULATION EXAMPLES AND RESULTS 

This section demonstrates the application of the investigated 
physical interpretation of the control parameters to the design 
of Model Predictive Control. It was indicated at the begin-
ning of the section 3. The Predictive Control with on-line 
tuning of the parameters (output penalization yQ ) is applied 
to a multidimensional robotic system ‘Moving Slide’. It is 
shown in Fig. 1 (Belda, 2010). 
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Fig. 1. Robotic system ‘Moving Slide’ 

5.1 Description of robotic system 

The robotic system used for the demonstration represents 
planar parallel robot serving for top milling operations. 
It has four inputs (for drives) and three outputs (Cartesian 
coordinates x, y and angular displacement ψ around perpen-
dicular z-axis to xy-plane). The control is focused on movable 
platform, i.e. just on Cartesian coordinates of its centre 
and its angular displacement. The system itself is a system 
with sophisticated nonlinear internal relations and, as men-
tioned, with different number of inputs and outputs. The rela-
tions can be described by a system of nonlinear differential 
equations as pure equations of motion (Stejskal et al., 1996) 

uygyyfy )(),( += &&&  (24) 

where vector of outputs is Tyx ],,[ ψ=y . 

The system (24) was linearized or decomposed and trans-
formed to the ordinary state-space model (Valášek et al., 
1999) and discretized to the following discrete form: 
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where individual elements of state matrix kA  and input 
matrix kB  are dependent on topical system state kx . They 
are recalculated in every time step prior to every evaluation 
of the quadratic criterion (1), from which topical control 
actions arise (Belda, 2003 and 2005).  
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5.2 Time histories of Model Predictive Control process 

Tests were performed on trajectory in Fig. 2 with one repe-
titive run and initial and final point in the workspace centre. 
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Fig. 2. Testing ‘S-shape’ trajectory 
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Fig. 3. Time histories of kinematical quantities 
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Fig. 4. Time histories of errors and control actions 

Fig. 3 - Fig. 4 show no tuned case (i.e. Qy = const.) and other 
Fig. 5 - Fig. 7 illustrate on-line tuned Model Predictive Con-
trol. In Fig. 5, there are time histories of the penalization ele-
ments responding to the noise increase for 0.4s in 4, 6, 14, 16s. 
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Fig. 5. Time histories of yQ  elements as are indicated. 
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Fig. 6. Time histories of kinematical quantities 
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Fig. 7. Time histories of errors and control actions 
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5.3 Tests’ conditions and result description 

The conditions of the tests were the following. The movable 
platform was required not to rotate i.e. required angular 
displacement was ψ = 0 for whole time range 20s (= 2×10s 
per one cycle). The maximum tangential speed of the centre 
of movable platform was v = 0.06 m s-1. The noise increase 
in mentioned time ranges was around ten times the normal 
amount. The sampling period was Ts = 0.02s for the model 
(25) and for control experiments as well. The prediction 
horizon was N = 10. 

The penalizations Qy and Qu for the test without tuning were 
selected as usual to be diagonal Qy: siq ii ,,2,1,1),( L==y  

and Qu: viq ii ,,1,10 4
).( L== −

u . In case of the test with on-
line parameter tuning of Predictive Control, the output pena-
lization is a function of estimated covariance matrix 

)ˆ( 1−= kk f yy CQ  with exponential forgetting λ  = 0.93. Qu 
is a diagonal matrix as in case without tuning. It is that only 
the ratio of both weighting factors Qy and Qu is important. 

From set-up point of view, the suitable ratio of the pena-
lizations or elements of Qy penalization are adjusted 
automatically. The penalization at the beginning of the con-
trol was set in correspondence to generally high output 
dispersion e.g. siyiyE ,,1

2}){(
L=− µ  = 100. That selection deter-

mines diagonal of Qy: siq ii ,,2,1,10 2
),( L== −

y  and represents 
low output penalization neglecting initial identity of the ma-
thematical model and system outputs due to initial position 
with zero speed. However, due to continuous tuning, 
the diagonal elements of Qy themselves and remaining 
elements of Qy (being initially zeros) are tuned to appropriate 
operational values. 

At the comparison of the quality of both cases without tuning 
and with tuning (Fig. 4 and Fig. 7), the control actions of tu-
ned case are more smoothed and smaller in magnitudes 
at the comparable profiles of control errors. The differences 
in robot behavior (see Fig. 3 and Fig. 6) look hardly 
noticeable. However, under detail investigation, the behavior 
of the controlled system in tuned case is calmer. It corre-
sponds to appropriate control actions in Fig. 4 and Fig. 7.  

6. CONCLUSION 

The paper deals with the automatic set-up and mainly 
with automatic on-line tuning of control parameters of Model 
Predictive Control. On the basis of fundamental analogy 
of Predictive Control and LQ control, where LQ control was 
derived using probability calculus, the physical interpretation 
of control parameters (penalization matrices) was explained. 

The presented interpretation was used as the basis for on-line 
tuning of mentioned control parameters. It complies with ma-
thematical conditions of minimization procedures. In com-
parison with on-line adaptive approaches, the tuning can react 
more quickly against model identification, where retuning 
of whole model is slower. Furthermore, the proposed way 
may be feasible in real-time for fast-dynamic systems 
without increased computational demands e.g. unlike con-
strained predictive control (Maciejowski, 2002). 

The practical notes to tuning realization were given by means 
of estimated parameter filtering in section 4. The section 
on examples and results demonstrated the on-line tuning 
with multidimensional robotic system. In it, there was a com-
parison with no-tuned case. 

Nowadays, there exist a lot of interesting control approaches, 
but their automatic set-up and tuning based on some universal 
base is lacking. It is a limiting factor for their use in real 
industrial applications. 

This paper proposes one possible systematic way for general 
use, which does not lead to increase control algorithm 
complexity or computational demands. It does not change 
conditions of usual control design. Only current information 
obtained from the topical measurement of system outputs 
and possibly of realized system inputs is considered.  
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